

Contents

	Overview
	Usage

	Why not…

	Installation

	Documentation

	Development

	Installation

	Reference
	reagex

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.1.2 (2018-12-16)

	0.1.1 (2018-12-12)

	0.1.0 (2018-12-08)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/python-reagex]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.com/github/janLuke/python-reagex] [image: Coverage Status] [https://codecov.io/github/janluke/python-reagex]

	package

	
[image: PyPI Package latest release] [https://pypi.org/project/reagex/] [image: Supported implementations] [https://pypi.org/project/reagex/]

[image: Supported versions] [https://pypi.org/project/reagex/]

	stats

	
[image: Commits since latest release] [https://github.com/janluke/python-reagex/compare/v0.1.2...master]

The goal of reagex (from “readable regular expression”)
is to suggest a way for writing complex regular expressions with
many capturing groups in a readable way.

At the moment, it contains just one very simple function
(called reagex) plus an utility function, but any function
which could be useful for writing readable patterns is welcome.

Note: Publishing this ridiculously small project was an excuse to familiarize
with python packaging, DevOps tools and the entire workflow behind the publication
of an open-source project. The project was generated using https://github.com/ionelmc/cookiecutter-pylibrary/

Consider to use https://github.com/r1chardj0n3s/parse instead.
I think reagex, in its simplicity, is less verbose in case most
of the groups you want to capture need custom regex not provided
by parse out of the box.

	Free software: BSD 2-Clause License

Usage

The core function reagex is just a wrapper of str.format and it works
in the same way. See the example

import re
from reagex import reagex

A sloppy pattern for an italian address (yeah, pretty bad example)
pattern = reagex(
 '{_address}, {postcode} {city} {province}',
 # groups starting with "_" are non-capturing
 _address = reagex(
 '{street} {number}',
 street = '(via|contrada|c/da|c[.]da|piazza|p[.]za|p[.]zza) [a-zA-Z]+',
 number = 'snc|[0-9]+'
),
 postcode = '[0-9]{5}',
 city = '[A-Za-z]+',
 province = '[A-Z]{2}'
)

matcher = re.compile(pattern)
match = matcher.fullmatch('via Roma 123, 12345 Napoli NA')
print(match.groupdict())

prints:
{'city': 'Napoli',
'number': '123',
'postcode': '12345',
'province': 'NA',
'street': 'via Roma'}

Groups starting by '_' are non-capturing. The rest are all named capturing
groups.

Why not…

Why not using just re.VERBOSE?

I think reagex is easier to write and to read:

	with reagex, you first describe the structure of the pattern in terms of groups,
then you provide a pattern for each group;
with re.VERBOSE you have to define the groups in the exact position they
must be matched: to get the high-level structure of the pattern you may need
to read multiple lines at the same indentation level

	with re.VERBOSE you just write a big string; with reagex you get
syntax highlighting which helps readability

	white-spaces don’t need any special treatment

	“{group_name}” is nicer than “(?P<group_name>)”

Installation

pip install reagex

Documentation

https://python-reagex.readthedocs.io/

Development

Possible improvements:

	make some meaningful use of the format_spec
in {group_name:format_spec}

	add utility functions like repeated to help writing
common patterns in a readable way

Testing

To run all the tests:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Installation

At the command line:

pip install reagex

Reference

	reagex

reagex

	
reagex.reagex(pattern, **group_patterns)

	Utility function for writing regular expressions with many capturing groups in a readable,
clean and hierarchical way. It is just a wrapper of str.format and it works in the same way.
A minimal example:

pattern = reagex(
 '{name} "{nickname}" {surname}',
 name='[A-Z][a-z]+',
 nickname='[a-z]+',
 surname='[A-Z][a-z]+'
)

	Parameters

	
	pattern (str) – a pattern where you can use str.format syntax for groups {group_name}.
Groups are capturing unless they starts with '_'.
For each group in this argument, this function expects a keyword argument
with the same name containing the pattern for the group.

	**group_patterns (str) – patterns associated to groups; for each group in pattern of the kind
{group_name} this function expects a keyword argument.

	Returns

	a pattern you can pass to re functions

	
reagex.repeated(pattern, sep, least=1, most=None)

	Returns a pattern that matches a sequence of strings that match pattern separated by strings
that match sep.

For example, for matching a sequence of '{key}={value}' pairs separated by '&', where
key and value contains only lowercase letters:

repeated('[a-z]+=[a-z]+', '&') == '[a-z]+=[a-z]+(?:&[a-z]+=[a-z]+)*'

	Parameters

	
	pattern (str) – a pattern

	sep (str) – a pattern for the separator (usually just a character/string)

	least (int, positive) – minimum number of strings matching pattern; must be positive

	most (Optional[int]) – maximum number of strings matching pattern; must be greater or equal to least

	Returns

	a pattern

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/janluke/python-reagex/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

reagex could always use more documentation, whether as part of the
official reagex docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/janluke/python-reagex/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up python-reagex for local development:

	Fork python-reagex [https://github.com/janluke/python-reagex]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/python-reagex.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/janluke/python-reagex/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Gianluca Gippetto

Changelog

0.1.2 (2018-12-16)

	Fix little mistake in the example (which is showed in PyPI, so a release
was necessary to update the PyPI page).

0.1.1 (2018-12-12)

	Minor fixes and modifications to documentation

0.1.0 (2018-12-08)

	First release on PyPI.

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 reagex	

Index

 R

R

 	
 	reagex (module)

 	
 	reagex() (in module reagex)

 	repeated() (in module reagex)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Usage

 		
 Why not…

 		
 Why not using just re.VERBOSE?

 		
 Installation

 		
 Documentation

 		
 Development

 		
 Testing

 		
 Installation

 		
 Reference

 		
 reagex

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.1.2 (2018-12-16)

 		
 0.1.1 (2018-12-12)

 		
 0.1.0 (2018-12-08)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

